

ISSN: 2320-0294

APPLICATION OF TWO STAGE FACTOR ANALYSIS FOR IDENTIFICATION OF KEY DETERMINANTS FOR SUCCESSFUL PROJECT IMPLEMENTATION IN THE INDUSTRIAL AREA OF WEST BENGAL(INDIA)

Dr (Mrs) Seema Sarkar Mondal*

Mr Angshuman Chowdhury*

Abstract—

This paper aims to identify Key determinants for successful Project Implementation in the state of West Bengal with special focus in the Durgapur Industrial area. The research is motivated by the fact that of late there has been limited success in Project Implementation in West Bengal which had earlier been very successful in Large scale project Implementation. Project related Professionals of the region were deliberated and interviewed. An objective realization instrument developed using 47 determinants identified in the research as possible drivers in Project implementation based on Likert's seven point scale of ranking. These 47 determinants were grouped into eight category or Factor group which are: Economic factors, External Environment and Regulatory Framework, Infrastructure and resource linkages, Project characteristics, Project management, Project Manager and Project team, Project stakeholders and Social factors. Based on the 72 respondent input to Objective Evaluation Questionnaire from each eight category two most critical determinants are selected through factor analysis. Total 16 Key Determinants were identified with which further second stage Factor analysis is done to identify the criticality and importance of each determinant. Also these determinants are extractor to form 5 components which determines the fate of any Project. So through this research, priority is also determined for the area and project manager based on priority can devote their time and energy to ensure that the Project is successfully completed. The customisation of Project planning and Project design has been the key determinant for successful project implementation.

Index Terms— Project, Project management, Project Implementation, determinants, Factor Analysis, Success Factors, Principal Component Analysis, Likert's ranking scale.

^{*} Dept. of Mathematics, National Institute of Technology, Durgapur(India).

ISSN: 2320-0294

INTRODUCTION

A project can be considered to be the achievement of a specific objective, which involves a series of activities and task which consumes resources as suggested by A K Munns

and B F Bjeirmi(1). There are various factors that determine the fate of the project and is not limited to Project Management only as stated by A D Wit (2). The project life cycle is an important phenomenon which needs to be studied. As per King and Cleland (3) it can be divided into 4 stages which are Conceptualization, Planning, Execution and Termination.

Project Echo was developed by Alex Bavelas (4) wherein the Project Managers of successful projects were asked to indicate things that they could do that would substantially help implementation success. As per Slevin & Pinto (5) there are 10 factors which are critical and can lead to Project failure or success.

The 10 factors are Project Mission, Top management support, Project Schedule/plan, Client Consultation, Personnel, Technical task, Client acceptance, Monitoring and Feedback, Communication and troubleshooting. However critical or key factors vary widely from location to location. Locally for each area similar factors needs to be identified and priority table needs to be drawn so that Project Managers can engage scarce resources effectively based on the priority so that success of the Project is fully assured. As suggested by Muller & Turnerb (10) Project managers competency aspect cannot be neglected for listing the determinants.

This Research has been focused for Industrial Belt of West Bengal in an around Durgapur. Based on the Brainstorming and interview with Project Managers engaged in the said area 47 Determinants were identified. Based on the 47 determinants the OBJECTIVE EVALUATION QUESTIONAIRE was prepared. For each 47 determinants Likert's 7 point scale method of evaluation similar to Benedict and Achimba (6) was applied which are – Strongly Disagree, Disagree, Somewhat Disagree, Neither Disagree/Agree, Somewhat Agree, Agree and Strongly Agree.

Total 72 respondents were identified from the target area who are involved in Project work and have great knowledge in execution of Project in the said area like DVC, SAIL-IISCO, Videocon, Matix Fertilisers, Essar, Reliance etc. The experience, Industry type and functions of project are

ISSN: 2320-0294

varied to get correct representation. These 72 respondents were interviewed and OBJECTIVE EVALUATION QUESTIONAIRE (OEQ) were filled by them based on their experience of Project execution on the target area. The data generated from the OEQ are tabulated and fed in the SPSS.

The 47 Determinants forming the Objective Evaluation

Questionnaire are –

Commitment C ontractor/Supplier/Vendors to	344
approved Plans /ProjectSpec.	X1
Skills, training and development undertaking	
by project staff/workers.	X2
Commitment of stakeholders for Successful	Х3
completion. Stakeholders Analysis	AS
Existence of use of scientific Project	
Management tools and techniques.	X4
Accuracy of project cost estimates.	X5
Government outlook and Policy towards Ind.	X6
Client commitment to project financing	X7
requirements.	\ /

The 47 determinants are reviewed and categorised into 8 Factor Groups based on similarity. The category earmarked are as follows:-

1) Economic Factors.

Determinant: X14,X26,X36,X37,X42,X43

2) External Environment and Regulatory framework. Determinant: X6,X8,X9,X16,X19,X39,X47

3) Infrastructure and Resource Linkage.

Determinant: X13,X20,X25,X31,X32,X33,X34

External Environmental factors (Political	
/Social)	X8
Regulatory requirements, standards and law.	X9
Accuracy of designs and specifications.	X10
SHE (Safety/Health/Environment) standards and SHE policy Adherence.	X11
Accuracy of time estimates for project schedule.	X12
Infrastructure support Like Roads, Power, Port, Rail etc.	X13
Economic Instability.	X14
Able Leadership in Project Implementation.	X15
Weather condition/Climate of the Project Area.	X16
Collective responsibility among project stakeholders.	X17
Internal Communication.	X18
External Communication with right Public relations.	X19
Resources Linkages.	X20
Full proof security of the Project Site.	X21
Interference of NGO and media.	X22
Coordination among Project team.	X23
Experience of Project team to work in similar	
environment.	X24
Avaibility of Power and Power infrastructure near vicinity	X25
Standard of living of the nearby area.	X26
Literacy level of surrounding area.	X27
Proximity of customers near project site.	X28
Promoter background and origin.	X29
Land cost level in the project region.	X30
Ground water or surface water avaibility.	X31
Wind force and direction.	X32
Nearness of Airport.	X33
Nearness of Seaport.	X34
Ethnic / regional composition of Project team.	X35
Global recession and economic slump.	X36
Land Fertility in the project region.	X37
Technology tieup partner competency.	X38
Government stake in Private / Private stake in government.	X39
Customisation level in Project planning.	X40
Customisation level in Project design	X41
Financial strength of participating Banks in Bankers consortium.	X42
Positive ROI & IRR of the Project.	X42 X43
	A43
Crime rate of nearby villages as per Law & Order.	X44
Fragmented land ownership.	X45
Corruption Level in the region.	X46
Existing Pollution level in the Project region.	X47
0	J

March 2015

Volume 4, Issue 1

ISSN: 2320-0294

4) Project Characteristics.

Determinant: X10,X12,X24,X40,X41

5) Project management.

Determinant: X4,X5,X11,X18.

6) Project Manager and Project Team.

Determinant: X2,X15,X23,X24,X35

7) Project Stakeholders.

Determinant: X1,X3,X7,X17,X29,X38.

8) Social Factors.

Determinant: X30,X44,X45,X46,X21,X22,X27.

Factor Analysis is applied for each of the 8 Factor Groups individually with the data collected from 72 Respondents. Based on inputs Factor wise Communalities and Total Variance is calculated. Two component extractions is done and then based on component Matrix 2 main determinants for each factor group or category is selected for further analysis. Factor Analysis is carried out by SPSS software as guided by Andy Field (7).

From each Factor group or Category 2 key determinants are identified based on maximum weightage as per Component Matrix outcome. Total 16 Determinants from 8 category/Factors are shortlisted for further analysis through Factor Analysis and the Mathematical formulations were based on T W Anderson(8).

The 2 Determinants selected for each factors from are as follows:-

1) Economic Factors.

Determinant: X14,X42

2) External Environment and Regulatory framework.

Determinant: X8,X9

3) Infrastructure and Resource Linkage.

Determinant: X32,X34

4) Project Characteristics.

Determinant: X40,X41

5) Project management.

Determinant: X11,X18.

6) Project Manager and Project Team.

Determinant: X23,X24

7) Project Stakeholders.

Determinant: X7,X17

8) Social Factors.

Determinant: X45,X46

The data collected for the selected 16 determinants are put to analysis for determination of key determinants. It is achieved by use of Factor analysis. Communalities for the above are drawn and Total variance is determined. Finally 5 components is extracted for ensuring 64.7 % success. The total variance matrix through the use of Principal component analysis is mentioned in Table1

Componen	Initial Eigenvalues				
t	Total	Total % of Variance Cumulative %			
1	4.114	25.715	25.715		
2	1.996	12.473	38.188		
3	1.658	10.362	48.549		
4	1.478	9.235	57.785		
5	1.110	6.939	64.723		
6	.930	5.815	70.538		
7	.856	5.347	75.885		
8	.731	4.570	80.455		
9	.667	4.166	84.621		
10	.543	3.396	88.016		
11	.439	2.743	90.760		

12	.409	2.559	93.319
13	.312	1.949	95.267
14	.302	1.887	97.154
15	.253	1.584	98.738
16	.202	1.262	100.000

	Extraction Sums of Squared Loadings						
Total	% of Variance	Cumulative %					
4.114	25.715	25.715					
1.996	12.473	38.188					
1.658	10.362	48.549					
1.478	9.235	57.785					
1.110	6.939	64.723					

Rotation Sums of Squared Loadings					
Total	% of Variance	Cumulative %			
2.624	16.401	16.401			
2.141	13.381	29.783			
2.051	12.817	42.600			
1.931	12.069	54.669			
1.609	10.055	64.723			

Total Variance Explained Table -1

http://www.ijmra.us

ISSN: 2320-0294

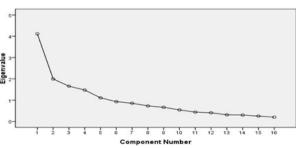


Fig. 1

Rotated Component Matrix

Analysis weighted by VAR00001

	Component				
	1	2	3	4	5
VAR00014	010	.773	.101	.012	.131
VAR00042	.349	.618	076	.142	.201
VAR00008	070	.799	022	.182	.026
VAR00009	.090	.285	.124	.822	106
VAR00032	127	085	.766	.339	.024
VAR00034	.072	.038	.706	060	019
VAR00040	.802	.139	.097	.162	011
VAR00041	.831	.149	.134	008	.058
VAR00011	.181	.005	108	.799	.268
VAR00018	.158	.095	001	067	.843
VAR00023	.662	141	017	.107	.264
VAR00024	.468	160	.492	.230	.144
VAR00007	.423	.312	.310	.424	.208
VAR00017	.078	.176	.025	.234	.784
VAR00045	.284	.438	.529	155	064
VAR00046	.394	.129	.526	302	.004

Table - 2

Component Transformation Matrix

Component	1	2	3	4	5
1	.655	.427	.391	.364	.320
2	321	.426	627	.464	.327
3	411	.723	.373	186	367
4	332	317	.391	.760	242
5	434	113	.402	198	.773

The Scree Plot for the research is mentioned in Fig.1. is analysed as per Andy Field (7). Finally the Rotated Component Matrix (Table -2) was derived to identify the main influencing factors or determinants for the extracted components.

Based on Component matrix and further analysis following were concluded:

- A) Factors X40 and X41 having weightage 0.678 and 0.676 respectively are the most important determinant for project success both of which falls under Project characteristics. So as a Key Factor for Project success, Project Characteristics is the most important Category which Project Proponent must be careful.
- B)The 5 Components extracted for achieving 64.723 % assured success and its constituents are as follows:

INTERPRETATION TABLE

SL	e		Variables	Co-relati	Component Details
No	Compon	nt		on With factor	
1	ue		X-40	0.802	Customisation of Project
	Componen		X-41	0.831	and Coordination among
	Con	t 1	X-23	0.662	Project team

2	61	X-14	0.773	Economic Factors and
	ent 2	X-42	0.618	External Environment
	Component 2	X-08	0.779	
	Соп			
3		X-32	0.802	Infrastructure, Social
		X-33	0.831	factors and project team
		X-24	0.492	competency
	~	X-45	0.529	
	Component 3	X-46	0.526	
	npor			
	Cor			
		X-9	0.822	Regulatory framework,
4	4	X-11	0.799	standard & Client
	nent	X-7	0.424	commitment to Project
	Component 4		_	finance requirement.
	Cor			- 4
5	S	X-18	0.843	Internal communication
	nent.	X-17	0.784	& Collective
	Component 5		1//	Responsibility
	Cor	. I I	VIII	The Alle

C)The interpretation table clearly confirms that the most important determinant for Project success is Customisation and Coordination of Project Team. Customisation is very important as in Nano Project of TATA at Singur whose design was based on huge land requirement became a failure because in West Bengal Land is scare. So ideally Plant layout and design should be based on these local considerations otherwise failure like Singur Project may get repeated.

- D) Based on Questionnaire Survey and analysis of the data collected from them it can be concluded that following factors are key to Project success:
 - I) Customisation in Project & Coordination among project Team.
 - II) Economic and External factors.
 - III) Infrastructure, Social factor and Competency of Project Team.
 - IV) Regulatory Framework, standard & Client /Stakeholders commitment to project finance.
 - V) Internal Communication and Collective Responsibility.

CONCLUSION

. From the research it can be concluded that Customisation of Project design and Plan is most important determinant for Project Implementation. Coordination among Project team has positive correlation to customisation Process. It is found that implementation of Agile Project Management, Lean Techniques and Six Sigma techniques (DMAIC) help a great deal to achieve necessary customisation which will be evaluated in future research. Continuous Change management also needs to be incorporated in the Project execution process. In future the research will try to correlate the implementation of the above techniques and also to formulate a Customisation Indexing process through which it can be satisfactorily ascertained whether the Project is adequately customised or not.

REFERENCES

- 1. A K Munns and B F Bjeirmi "The role of Project management in achieving Project Success" International Journal of project management Vol. 14, No 4-1996, pp 81-87.
- 2. Wit A D "Measurement of Project Success" Project Management 6 (3) 1988, pp 164-170.
- 3. King. W.R and Cleland "Life cycle management" in Project management Handbook, 1983, pp 209-221.
- 4. Alex Bavelas "Project Echo: Use of Projective techniques to Define Reality in Different Cultures." Personal Communication, Stanford university, 1968.

- 5. Pinto. J . K and Slevin. D . P "Critical factors in Successful project Implementation" IEEE Transaction of Engineering management , Vol EM-34 (1987) pp 22-27.
- 6. Benedict Amande, Dr Achimba C O & Kaduru international Journal of management sciences and Business research Vol 1, Issue -6.
- 7. Andy Field "Discovering Statistics Using SPSS" Second Edition, Sage Publication, ISBN: 978-0-7619-4452-2.
- 8. T W Anderson "An introduction to Multivariate Statistical Analysis" Wiley ISBN: 978-81-265-2448-8.
- 9. SPSS Software and Guide.
- 10. Leadership competency profiles of successful project managers by Ralf Müller & Rodney
 Turnerb in International Journal of Project Management Volume 28, Issue 5, July 2010
- 11. Sakhel J and Dutta S 2000 An insight into statistics. 2nd Edi Calcutta Book Syndicate.

ISSN: 2320-0294

Author's Profile:

Mr Angshuman Chowdhury is working in the field of Project management for more than 10 years and has been instrumental in implementing 2 Greenfield and 2 Brownfield expansion Project. He has done B.tech in Mechanical Engineering, Post Graduate Diploma in Marine Engg, MTech in Operations Research &

Business Management and also MBA in international Business.

Presently he is Asst General Manager in Matix Fertilisers and Chemicals Ltd and Part time Research scholar at National Institute of Technology, Durgapur. He is associated for past several years with QCFI – Quality Circle Forum of India , Institute of Engineers (I) and other professional bodies. He has been a faculty and done consultancy to various organizations like ECL , Saint Gobain , DVC , SAIL , DCL etc.

Mr Chowdhury has published Research Papers in 2 International Journals related to Project Management and Lean Manufacturing Techniques.